Organizing Committee
 Huijun Fan (SMS PKU)
symplectic geometry and mathematical physics, geometric analysis  Sergey Gorchinskiy (MI RAS)
algebra and geometry: algebraic geometry, Ktheory  Hailiang Li (SMS CNU)
fluid mechanics, partial differential equations, analysis  Jinsong Liu (AMSS)
algebraic geometry: singularity theory  Yi Liu (BICMR)
Topology of 3manifolds, hyperbolic geometry  Denis Osipov (MI RAS)
algebraic geometry, number theory, integrable system  Ye Tian (UCAS, AMSS)
Number Theory, Arithmetic Geometry, Iwasawa Theory  Alexey Tuzhilin (MSU)
geometry: Riemannian and metric geometry  Yue Yang (CE PKU)
computation mathematics and mechanics  Ping Zhang (AMSS)
P. D. E.: fluid equation and semiclassical analysis  Alexander Zheglov (MSU)
geometry: algebraic geometry, integrable system
PROGRAM
11:00 (GMT+3)
Vladimir Temlyakov Steklov Institute of Mathematics, Russia, University of South Carolina, USA 

Bio: Vladimir Temlyakov works in Steklov Mathematical Institute of RAS, Moscow State University, University of South Carolina. He is a top expert in function theory: approximations of functions in one variable and multivariable cases (approximations by polynomials, nwidths, optimal cubature formulas). Integral operators (estimates of singular numbers, approximation numbers, bilinear approximation of kernels of these operators). 
Discretization and recovery.
Recently, there was a big progress in studying sampling discretization of integral norms of functions from finite dimensional subspaces and from collections of such subspaces (universal discretization). It was established that sampling discretization results are useful in a number of applications. In particular, they turn out to be useful in sampling recovery. We will discuss some of those results.
The goal of this talk is to survey the corresponding results, and connect together ideas, methods, and results from different areas of research related to problems of discretization and recovery in the case of finitedimensional subspaces.
12:00 (GMT+3)
Huijiang Zhao Wuhan University 

Bio: Huijiang Zhao, professor of School of Mathematics and Statistics of Wuhan University. He got his bachelor degree from Central China Normal University in 1988, and PhD. from the Chinese Academy of Sciences in 1997. He is interested in mathematical theories of nonlinear partial differential equations, especially the global wellposedness of kinetic equations and the corresponding hydrodynamic limits. 
Hilbert expansion for some nonrelativistic kinetic equation.
The VlasovMaxwellLandau (VML) system and the VlasovMaxwellBoltzmann (VMB) system are fundamental models in dilute collisional plasmas. In this talk, we are concerned with the hydrodynamic limits of both the VML and the noncutoff VMB systems in the entire space. Our primary objective is to rigorously prove that, within the framework of Hilbert expansion, the unique classical solution of the VML or noncutoff VMB system converges globally over time to the smooth global solution of the EulerMaxwell system as the Knudsen number approaches zero.
The core of our analysis hinges on deriving novel interplay energy estimates for the solutions of these two systems, concerning both a local Maxwellian and a global Maxwellian, respectively. Our findings address a problem in the hydrodynamic limit for Landautype equations and noncutoff Boltzmanntype equations with a magnetic field. Furthermore, the approach developed can be seamlessly extended to assess the validity of the Hilbert expansion for other types of kinetic equations.
The meeting will be held in the form of a webinar on the Voov platform.
1) Download VOOV from here https://voovmeeting.com/mobile/downloadindex.html
2) Install it and register in it naturally (registration by email).
3) However, if you have some difficulties, please, consult to https://zhuanlan.zhihu.com/p/589899174?utm_id=0
To Join Tencent Meeting：https://meeting.tencent.com/dm/Iu5M179e8w0A
Meeting ID：49827125392
Password：654321